Iridoids from the Green Leaves of Eucommia ulmoides

Chika Takamura,[†] Tetsuya Hirata,[‡] Taro Ueda,[‡] Masateru Ono,[§] Hiroyuki Miyashita,[†] Tsuyoshi Ikeda,[†] and Toshihiro Nohara^{*,†}

Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan, Kobayashi Pharmaceutical Corporation, 30-3, 1-chome, Toyokawa, Ibaraki-shi, Osaka 567-0057, Japan, and School of Agriculture, Kyusyu Tokai University, 5435 Minamiaso, Aso, Kumamoto 869-1404, Japan

Received February 27, 2007

The bark of *Eucommia ulmoides* is a well-known crude drug in oriental medicine, and its leaves have been consumed as a beverage. From the green leaves of this plant, three new iridoids (1-3) were isolated, together with 12 known compounds. Compound 1 is the first iridoid possessing a saturated bond between C-3 and C-4 and having an ether linkage between C-3 and C-2 of the glucose unit. Furthermore, 2 and 3 may be regarded as the first naturally occurring conjugates of an iridoid and an amino acid.

Eucomnia ulmoides Oliv. belongs to a single species genus in the plant family Eucommiaceae. The bark of this plant has been used as a tonic to strengthen the liver and kidneys, and its leaves have been used as a food. In the western region of the People's Republic of China, *E. ulmoides* leaves have long been used in tea and in a gruel. Recent pharmacological research on the leaves have shown their hypotensive effects in humans and in spontaneous hypertensive rats (SHR).¹ In a preceding paper, 22 known compounds, consisting of eight iridoids, seven flavonoids, five phenolic derivatives, and two triterpenoids, were identified from the roasted leaves of *E. ulmoides*.^{2–5}

In the present investigation, the constituents have been examined in the green leaves of *E. ulmoides*, which were momentarily treated with steam, then dried at low temperature, to identify 12 known compounds, namely, six iridoids {asperuloside, asperulosidic acid, deacetyl asperulosidic acid, scandoside 10-*O*-acetate, geniposidic acid (4), and aucubin}, five flavonoids (quercetin 3-*O*-glucopyranoside, quercetin 3-*O*-sambubioside, rutin, astragalin, and kaempferol 3-*O*-rutinoside), and one phenolic derivative, chlorogenic acid.⁶ Three new compounds, named eucomosides A-C (1-3) were also isolated, and the structural characterization of these three compounds is described herein.

Results and Discussion

Eucomoside A (1) was obtained as a white powder with $[\alpha]_D$ +99.1 (c 0.1 MeOH). In the positive FABMS, 1 indicated a [M + H]⁺ ion peak at m/z 415. The molecular formula, $C_{18}H_{22}O_{11}$, was determined from the positive HRESIMS data. Acidic hydrolysis of 1 gave D-glucose, and the ¹H NMR spectroscopic coupling constant of the anomeric proton indicated the linkage mode of the D-glucopyranosyl unit to be β . The ¹³C NMR spectrum (in C₅D₅N) displayed a total of 18 carbon signals, which were composed of a monoterpene moiety including two acetal carbon signals at δ 91.9 and 95.8, one carbonyl carbon signal at δ 178.5, two olefinic carbon signals at δ 129.3 and 143.7, two oxygen-bearing carbon signals at δ 61.0 and 86.9, three methine carbon signals at δ 35.3, 38.3, and 45.5, together with signals for a β -D-glucopyranosyl moiety at δ 99.0, 80.3, 75.8, 71.2, 79.9, and 62.6 (C-1-6), and an acetyl group at δ 20.5 and 170.3. The respective ¹H and ¹³C NMR signals (Table 1) were assigned by the ${}^{1}H-{}^{1}H$ COSY, HMQC, and HMBC spectra as shown in Figure 1.

In the difference NOE spectrum of **1**, NOEs were observed between H-4 and H-5, H-5 and H-6, H-5 and H-9, H-1 and H-9,

H-1 and glc H-1, and H-4 and glc H-2, respectively (Figure 2). These correlations were indicated as β at C-4 and C-6. Morever, the above data and the ¹H NMR coupling constants of H-1 (δ 5.67, d, J = 1.2 Hz) and H-3 (δ 5.87, d, J = 2.4 Hz) were indicated to be α at both C-1 and C-3. Therefore, the absolute configuration is represented as shown in Figure 1.

Eucomoside B (2) was obtained as a white powder showing $[\alpha]_D$ -10.6 (*c* 0.1 CH₃CN). In the positive FABMS, 2 indicated a [M + Na]⁺ ion peak at *m*/*z* 544, and the molecular formula of 2 was determined to be C₂₅H₃₁NO₁₁ by positive HRFABMS. The ¹³C NMR spectrum (in CD₃OD) showed a total of 25 carbon signals, which constituted three moieties: a monoterpene moiety with signals at δ 97.8, 148.6, 115.8, 36.2, 39.2, 127.9, 144.8, 47.4, 61.4, 168.9 (C-1, 3–11), a β -D-glucopyranosyl moiety with signals at δ 100.3, 74.9, 77.9, 71.6, 78.4, 62.7 (C-1–6), and one phenylalanine moiety with signals at δ 139.8, 130.7, 129.2, 127.4, 129.2, 130.7, 38.7, 56.7, 177.0 (C-1'–9'). The assignments of the respective ¹H

10.1021/np0780046 CCC: \$37.00 © 2007 American Chemical Society and American Society of Pharmacognosy Published on Web 08/10/2007

^{*} Author to whom correspondence should be addressed. Tel: +81-96-3714380. Fax: +81-96-3627799. E-mail: none@gpo.kumamoto-u.ac.jp.

[†] Kumamoto University.

[‡] Kobayashi Pharmaceutical Co., Ltd.

[§] Kyushu Tokai University.

Table 1. NMR Spectroscopic Data (in C_5D_5N) for Eucomoside A (1)

position	δ_{C}	$\delta_{\rm H}(J{\rm in}{\rm Hz})$	HMBC	NOE
1	91.9	5.67 d (1.2)	H-3, H-9, Glc H-1	H-9, Glc H-1
3	95.8	5.87 d (2.4)	H-1, H-4, Glc H-2	
4	38.3	3.54 dd (2.5, 12.8)		H-5, Glc H-2
5	35.3	3.72 m	H-1, H-7	H-4, H-6, H-9
6	86.9		H-7	H-5,
7	129.3	5.90 s	H-5, H-9, H-10a, H-10b	
8	143.7		H-5, H-6, H-9, H-10a,	
			H-10b	
9	45.5	3.30 d	H-1, H-7	H-1, H-5
10a	61.0	4.78 d (14.7)	H-7	
10b		4.85 d (14.7)		
11	178.5		H-3, H-4, H-6	
OCOCH3	170.3	2.07 s	OCOCH ₃	
OCOCH3	20.5		—	
Glc 1	99.0	5.32 d (7.3)	Glc H-2,	H-1
Glc 2	80.3	4.03 m	H-3, Glc H-1, Glc H-3	H-4
Glc 3	75.8	4.29 dd (8.6, 9.2)	Glc H-2, Glc H-4	
Glc 4	71.2	4.23 dd (9.2, 9.2)	Glc H-3	
Glc 5	79.9	4.03 m	Glc H-4	
Glc 6a	62.6	4.39 dd (5.5, 11.6)	Glc H-4	
Glc 6b		4.60 dd (2.1, 12.2)	Glc H-4	

and ¹³C NMR signals (Table 2) in the monoterpene moiety were made by the aid of $^{1}H-^{1}H$ COSY, HMQC, and HMBC spectra, as illustrated as Figure 3, suggesting the monoterpene moiety to be 4.

The linkage location of the phenylalanine moiety was deduced to be at C-11 of 4; however, no HMBC correlation from H-8' in the phenylalanine moiety to the iridoid moiety was observed. Moreover, we could not determine the absolute configuration at C-8'. Hence, a synthetic study for the production of 2 was required. Geniposidic acid (4) and L-phenylalanine methyl ester $(5a)^7$ were condensed with 1-hydroxybenzotriazole (HOBt) and 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (WSC) to afford a conjugated methyl ester (5a), which was then deprotected with 0.5 M NaOH to provide a final product (7a), which was identical with 2 with respect to the ¹H and ¹³C NMR spectra and HPLC analysis. Compounds 6b and 7b were prepared in a similar way (Scheme 1). Compound 7b was not coincident with 2 with respect to their ¹H NMR spectra and HPLC analysis. In particular, the ¹H NMR signals due to H-6a and H-6b were shifted by +0.1 and +0.6 ppm, respectively. Hence, 2 was determined to be a condensed compound between the C-11 of the carboxylic acid of 4 and an

Figure 1. HMBC spectrum of eucomoside A (1) (in C_5D_5N).

 Table 2.
 NMR Spectroscopic Data (in CD₃OD) for Eucomoside

 B (2)

position	$\delta_{ m C}$	$\delta_{ m H}$ (J in Hz)	HMBC
1	97.8	5.10 d (7.3)	H-5, Glc H-1
3	148.6	7.14 d (1.2)	H-1, H-4, H-11
4	115.8		H-1, H-6
5	36.2	3.20 m	H-1, H-6
6a	39.2	1.88 dd (7.9, 15.9)	
6b		2.50 dd (7.9, 15.3)	
7	127.9	5.69 s	H-5, H-6, H-9
8	144.8		
9	47.4	2.72 dd (9.2, 9.2)	H-1, H-6, H-7, H-8
10a	61.4	4.16 d (14.0)	H-7, H-8, H-9
10b		4.29 d (14.0)	
11	168.9		
Glc 1	100.3	4.69 d (7.3)	H-1
Glc 2	74.9	3.27 m	H-1, H-3
Glc 3	77.8	3.39 dd (9.2, 9.2)	H-4
Glc 4	71.6	3.27 m	
Glc 5	78.3	3.27 m	H-4, H-5
Glc 6a	62.7	3.65 dd (1.8, 12.2)	
Glc 6b		3.85 dd (1.8, 12.2)	
1'	139.8		
2'	130.7	7.20 s	
3'	129.2	7.21	
4'	127.4	7.17 s	
5'	129.2	7.21	
6'	130.7	7.20 s	
7 ′ a	38.7	3.09 dd (7.3, 14.0)	H-1, H-2. H-8
7 ′ b		3.27 m	
8'	56.7	4.60 m	H-1, H-7, H-9
9′	177.0		

amine function of L-phenylalanine. As far as we know, this is the first example of an iridoid conjugated with an amino acid.

Eucomoside C (3) was obtained as a white powder, showing $[\alpha]_D - 13.1$ (*c* 0.5 H₂O). The molecular formula of **3** was determined to be C₂₇H₃₂N₂O₁₁ by positive HRESIMS. The ¹³C NMR spectrum (in CD₃OD) of **3** showed the occurrence of the **4** moiety and a tryptophan moiety, with signals at δ 124.4, 111.8, 119.6, 119.8, 122.4, 112.2, 129.0, 138.1, 28.3, 57.5, and 180.0 (C-2'-12'). The assignment of the respective ¹H and ¹³C NMR signals was confirmed with the ¹H-¹H COSY, HMQC, and HMBC spectra, as shown in Figure 4.

Therefore, the structure of **3** was deduced to be a conjugated compound of tryptophan and **4**, to form an amide bond at C-11 of **4**; however, no HMBC correlation between H-11 in the tryptophan moiety and the iridoid moiety was observed. Moreover, the absolute configuration at C-11' was not readily apparent, so a synthetic study for the production of **3** was required. Compounds **6**c–**7**c and **6**d–

Figure 3. HMBC spectrum of eucomoside B (2) (in CD₃OD).

HO HO HOHO OH

Figure 2. NOE spectrum of eucomoside A (1) (in C_5D_5N).

Figure 4. HMBC spectrum of eucomoside C (3) (in CD₃OD).

č

Scheme 1. Synthesis of Iridoids Possessing Aromatic Amino Acids

7d were prepared in a similar way (Scheme 1). Compound 7c corresponded to 3 with respect to its ¹H and ¹³C NMR data. On the other hand, 7d was not coincident with 3 with respect to its ¹H NMR spectrum. In particular, H-6a, H-6b, H-5, and H-7 were shifted by ± 0.3 , ± 0.4 , ± 0.2 , and ± 0.1 ppm, respectively. Hence, 3 was determined to be a condensed compound between the C-11 of the carboxylic acid of 4 and an amine function of L-tryptophan.

Compound 1 is regarded as the first iridoid possessing a saturated bond between C-3 and C-4 and having an ether bond between C-3 and C-2 of the glucose unit. Furthermore, 2 and 3 are the first natural compounds conjugated between iridoid and an amino acid.

Experimental Section

General Experimental Procedures. Optical rotations were measured using a JASCO DIP-1000 KUY digital polarimeter (l = 0.5). ¹H and ¹³C NMR spectra were recorded on a JEOL α-500 spectrometer, and chemical shifts are given on the δ (ppm) scale using tetramethylsilane (TMS) as internal standard. FABMS were recorded on a JEOL JMS-700 spectrometer. The HRESIMS were recorded on a JEOL JMS-700 spectrometer. The HRESIMS were recorded on a JEOL JMS-7100LC "AccuTOF" spectrometer. Column chromatography was carried out with Diaion HP-20P, MCI gel CHP 20P (Mitsubishi Chemical Industries Co., Ltd.), silica gel 60 (Merck, Art. 9385), Sephadex LH-20 (Pharmacia Fine Chemicals), Chromatorex ODS (Fuji Silysia Chemical Co., Ltd.), and Amberlite MB-3 (Organo Co., Ltd.). TLC was performed on precoated silica gel 60 F₂₅₄ (Merck) and RP-18 F₂₅₄S (Merck), and the compounds were detected by spraying with 10% H₂SO₄ in MeOH, followed by heating on a hot plate.

Plant Material. The leaves of *E. ulmoides* collected in August 2005 at Chengdu, Sichuam Province, People's Republic of China, were momentarily treated with steam. A voucher specimen (No. 200) was identified by T.N. and deposited in the Herbarium of the Department of Natural Medicines, Kumamoto University, Kumamoto, Japan.

Extraction and Isolation. Dried leaves (577.8 g) of *E. ulmoides* were extracted with hot water for 10 h at 60 °C. The extract was subjected to Diaion HP-20 column chromatography with a gradient of H₂O-MeOH (1:0 \rightarrow 0:1) to afford fractions 1-6, in the order of elution. A part (2.0 g) of fraction 1 (135.5 g) was chromatographed over MCI gel CHP 20P with H₂O and MeOH to give geniposidic acid (4, 216.1 mg), aucubin (255.2 mg), and fractions 1a and 1b. Fraction 1a (760.4 mg) was subjected to Sephadex LH-20 column chromatography eluted with H₂O, MeOH, and H₂O-acetone and then purified by Chromatorex ODS with a gradient of H₂O-MeOH (1:0 \rightarrow 0:1) to furnish asperulosidic acid (9.3 mg). Fraction 1b (37.2 mg) was subjected to silica gel 60 column chromatography with a gradient of CHCl₃-MeOH-H₂O (8:2:0.2 \rightarrow 0:1:0) to give chlorogenic acid (3.7 mg). A part (1.0 g) of fraction 2 (17.28 g) was chromatographed over silica gel 60 with

a gradient of CHCl₃-MeOH-H₂O (20:1:0 \rightarrow 0:1:0) to give asperuloside (275.0 mg) and fractions 2a and 2b. Fraction 2a (107.7 mg) was subjected to silica gel 60 column chromatography with a gradient of CHCl₃-MeOH-H₂O (8:2:0.2 \rightarrow 0:1:0) and then purified by HPLC with 20% MeOH to give scandoside 10-O-glucopyranoside (3.8 mg) and asperulosidic acid (6.0 mg). Fraction 3 (3.8 g) was chromatographed over Chromatorex ODS with a gradient of $H_2O-MeOH$ (1:0 \rightarrow 0:1) to give eucomosides A (1, 12.0 mg) and B (2, 4.0 mg). A part (2.0 g) of fraction 4 (9.0 g) was subjected to Sephadex LH-20 column chromatography eluted with H₂O-MeOH (5:5 \rightarrow 0:1) to give astragalin (55.3 mg), quercetin 3-O-glucopyranoside (133.9 mg), and fractions 4a and 4b. Fraction 4a (327.1 mg) was purified by silica gel 60 column chromatography with a gradient of CHCl₃-MeOH-H₂O (15:1:0 \rightarrow 0:1:0) to furnish 3 (3.0 mg). Fraction 4b (441.2 mg) was chromatographed over Chromatorex ODS with a gradient of H2O-MeOH (3:7 \rightarrow 0:1) to give quercetin 3-O-sambubioside (155.2 mg), fraction 4b-1, and fraction 4b-2. A part (10.0 mg) of fraction 4b-1 (94.3 mg) was subjected to HPLC with 35% MeOH to give rutin (1.7 mg). Fraction 4b-2 (94.3 mg) was subjected to HPLC with 50% MeOH to give kaempferol 3-O-rutinoside (6.0 mg).

EucomosideA (1): white powder; $[\alpha]_D$ +99.1 (*c* 0.1, MeOH); ¹H NMR (in C₅D₅N, 500 MHz) δ 2.07 (3H, s, acetyl), 3.30 (2H, d, J =8.5 Hz, H-9), 3.54 (1H, dd, J = 2.5, 12.8 Hz, H-4), 3.72 (1H, m, H-5), 4.03 (2H, m, glc H-2, 5), 4.23 (1H, dd, J = 9.2, 9.2 Hz, glc H-4), 4.29 (1H, dd, J = 8.6, 9.2 Hz, glc H-3), 4.39 (1H, dd, J = 5.5, 11.6 Hz, glc H-6a), 4.60 (1H, dd, J = 2.1, 12.2 Hz, glc H-6b), 4.78 (1H, d, J =14.7 Hz, H-10*a*), 4.85 (1H, d, *J* = 14.7 Hz, H-10*b*), 5.32 (1H, d, *J* = 7.3 Hz, glc H-1), 5.55 (1H, d, J = 7.3 Hz, H-6), 5.67 (1H, d, J = 1.2 Hz, H-1), 5.87 (1H, d, J = 2.4 Hz, H-3), 5.90 (1H, s, H-7); ¹³C NMR (in C₅D₅N, 125 MHz), see Table 1; positive FABMS m/z 415 [M + H]⁺; HRESIMS m/z 437.1076 [M + Na]⁺ (calcd for C₁₈H₂₂NaO₁₁, 437.1059). Compound 1 (1.0 mg) in 2 N HCl/H2O (0.2 mL) was heated at 90 °C for 0.5 h. The reaction mixture was neutralized with Amberlite MB-3, filtered, and evaporated under reduced pressure to give a residue. The residue in MeOH was analyzed by HPLC under the following condition: column, YMC pack Polyamine II (YMC Co., Ltd., 4.6 mm i.d. × 250 mm); solvent, 80% CH₃CN; flow rate, 0.8 mL/min; column temperature, 45 °C; detector, JASCO OR-2090 plus; pump, JASCO PU-2080; column oven, JASCO CO-2060. The retention time and optical activity of the sample were identical with those [t_R (min): 6.7; optical activity: positive] of D-glucose. The aglycon could not be detected by TLC.

Eucomoside B (2): white powder; $[\alpha]_D - 10.6$ (*c* 0.1, CH₃CN); ¹H NMR (in CD₃OD, 500 MHz) δ 1.88 (1H, dd, J = 7.9, 15.9 Hz, H-6*a*), 2.50 (1H, dd, J = 7.9, 15.3 Hz, H-6*b*), 2.72 (1H, dd, J = 9.2, 9.2 Hz, H-9), 3.09 (1H, dd, J = 7.3, 14.0 Hz, H-7'a), 3.20 (1H, m, H-5), 3.22–3.31 (4H, m, glc H-2, 4, 5, H-7'*b*), 3.39 (1H, dd, J = 9.2, 9.2 Hz, glc H-3), 3.65 (1H, dd, J = 5.5, 12.2 Hz, glc H-6*a*), 3.85 (1H, dd, J = 1.8,

12.2 Hz, glc H-6b), 4.16 (1H, d, J = 14.0 Hz, H-10a), 4.29 (1H, d, J = 14.0 Hz, H-10b), 4.60 (1H, m, H-8'), 4.69 (1H, d, J = 7.3 Hz, glc H-1), 5.10 (1H, d, J = 7.3 Hz, H-1), 5.69 (1H, s, H-7), 7.14 (1H, dd, J = 1.2 Hz, H-3), 7.17 (1H, s, H'-4), 7.20 (2H, s, H-2', 6'), 7.21 (2H, s, H-3', 5'); ¹³C NMR (in CD₃OD, 125 MHz), see Table 2; positive FABMS m/z 544 [M + Na]⁺; HRFABMS m/z 544.1790 [M + Na]⁺ (calcd for C₂₅H₃₁NNaO₁₁, 544.1794).

Conjugated Compound (6a) of Geniposidic acid and L-Phenylalanine Methyl Ester. To a solution of geniposidic acid (4) (30.0 mg, 0.080 mmol) in DMF (2.0 mL) were added L-phenylalanine methyl ester (27.7 mg, 0.128 mmol), Et₃N (0.03 mL, 0.215 mmol), HOBt (28.5 mg, 0.174 mmol), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC, 40.0 mg, 0.209 mmol). After being stirred for 17 h at room temperature, the solvent was removed in vacuo. It was purified by column chromatography (silica gel) using a 14:2:0.2 mixture of CHCl₃-MeOH-H₂O as eluent to obtain **6a** (42.0 mg, 98% yield) as a white powder: $[\alpha]_D$ –39.2 (*c* 0.1, MeOH); ¹H NMR (in CD₃OD, 500 MHz) δ 1.91 (1H, m, H-6a), 2.56 (1H, dd, J = 8.6, 15.9 Hz, H-6b), 2.71 (1H, m, H-9), 3.01 (1H, dd, J = 9.8, 13.4 Hz, H'-7a), 3.19-3.39 (6H, m, H-5, glc H-2, 3, 4, 5, H'-7b), 3.64 (1H, m, glc H-6a), 3.71 (3H, s, OMe), 3.85 (1H, dd, J = 1.8, 11.6 Hz, glc H-6b), 4.16 (1H, d, J)J = 14.0 Hz, H-10a), 4.29 (1H, d, J = 14.0 Hz, H-10b), 4.68 (1H, d, J = 7.9 Hz, glc H-1), 4.71 (1H, dd, J = 5.5, 9.2 Hz, H-8'), 5.10 (1H, d, J = 7.3 Hz, H-1), 5.72 (1H, s, H-7), 7.10 (1H, s, H-3), 7.21-7.30 (5H, m, H-2', 3', 4', 5', 6'); ¹³C NMR (in CD₃OD, 125 MHz) δ 36.1, 38.0, 39.0, 47.3, 52.7, 55.3, 61.4, 62.7, 71.6, 74.9, 77.9, 78.4, 97.8, $100.3, 115.8, 127.9 \times 2, 129.5 \times 2, 130.2 \times 2, 138.4, 144.8, 148.7,$ 170.2, 173.9; positive FABMS *m*/*z* 558 [M + Na]⁺.

Deprotection of 6a. To a solution of 6a (42.0 mg, 0.079 mmol) in MeOH (1.0 mL) was added 0.5 N NaOH (1.0 mL). After being stirred for 5 h at room temperature, the mixture was purified by column chromatography (Shephadex LH-20) using MeOH as eluent. Compound **7a** was obtained as white powder (18.8 mg, 46% yield): $[\alpha]_D$ -52.0 (c 0.1, CH₃CN); ¹H NMR (in CD₃OD, 500 MHz) δ 1.86 (1H, m, H-6a), 2.48 (1H, dd, J = 7.9, 16.5 Hz, H-6b), 2.70 (1H, dd, J = 7.3, 7.3 Hz, H-9), 3.08 (1H, dd, J = 7.3, 13.4 Hz, H-7'a), 3.21 (1H, m, H-5), 3.28-3.32 (4H, m, glc H-2, 4, 5, H-7'b), 3.38 (1H, dd, J = 8.3, 9.2 Hz, glc H-3), 3.64 (1H, m, glc H-6a), 3.85 (1H, dd, J = 1.8, 12.2 Hz, glc H-6b), 4.15 (1H, d, J = 14.0 Hz, H-10a), 4.28 (1H, d, J = 14.0 Hz, H-10b), 4.60 (1H, dd, J = 5.8, 7.3 Hz, H'-8), 4.68 (1H, dd, J = 2.4, 7.9 Hz, glc H-1), 5.10 (1H, dd, J = 2.4, 7.3 Hz, H-1), 5.68 (1H, s, H-7), 7.13 (1H, d, J = 1.2 Hz, H-3), 7.15-7.25 (5H, m, H-2', 3', 4', 5', 6'); ¹³C NMR (in CD₃OD, 125 MHz) δ 36.2, 38.7, 39.2, 47.4, 56.8, 61.4, 62.7, 71.6, 75.0, 77.9, 78.4, 97.9, 100.4, 115.8, 127.5, 127.9, 129.3 × 2, 130.7 × 2, 139.3, 144.9, 148.8, 169.2, 175.0; positive FABMS m/z 566 [M (COONa) + Na]⁺.

Conjugated Compound (6b) of Geniposidic Acid and D-Phenylalanine Methyl Ester. Compound 6b was prepared in a similar way to 6a, using 4 (28.9 mg, 0.077 mmol), D-phenylalanine methyl ester (28.0 mg, 0.129 mmol), Et₃N (0.03 mL, 0.215 mmol), HOBt (23.5 mg, 0.174 mmol), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC, 40.0 mg, 0.209 mmol) in DMF (2.0 mL). Compound **6b** was obtained as a white powder (35.0 mg, 85% yield): $[\alpha]_D - 21.2$ (c 0.1, MeOH); ¹H NMR (in CD₃OD, 500 MHz) δ 1.89 (1H, m, H-6a), 2.59 (1H, dd, J = 8.5, 15.9 Hz, H-6b), 2.73 (1H, m, H-9), 3.04 (1H, m, H'-7a), 3.18-3.38 (6H, m, H-5, glc H-2, 3, 4, 5, H'-7b), 3.64 (1H, m, glc H-6a), 3.70 (3H, s, OMe), 3.85 (1H, dd, J = 1.8, 11.6 Hz, glc H-6b), 4.16 (1H, d, J = 14.7 Hz, H-10a), 4.29 (1H, d, J = 15.3 Hz, H-10b), 4.68 (1H, dd, J = 2.4, 7.9 Hz, glc H-1), 4.73 (1H, dd, J = 5.5, 9.2 Hz, H'-8), 5.12 (1H, dd, J = 2.4, 7.3 Hz, H-1), 5.72 (1H, s, H-7), 7.17-7.27 (6H, m, H-2, 3, 4, 5, 6, H-3); ¹³C NMR (in CD₃OD, 125 MHz) & 36.1, 38.2, 39.1, 47.4, 52.7, 55.1, 61.3, 62.7, 71.6, 74.9, 77.9, 78.4, 97.7, 100.3, 115.9, 127.8, 128.2, 129.5 \times 2, 130.2 \times 2, 138.4, 144.8, 148.3, 169.8, 173.7; positive FABMS m/z 558 [M + Na]⁺.

Deprotection of 6b. Compound **7b** was prepared in a similar way to **7a**, using **6b** (35.0 mg, 0.065 mmol), and **6b** was obtained as a white powder (25.0 mg, 73% yield): $[\alpha]_D -40.2$ (*c* 0.5, CH₃CN); 'H NMR (in CD₃OD, 500 MHz) δ 1.94 (1H, m, H-6a), 2.68 (1H, dd, J = 7.9, 7.9 Hz, H-9), 3.08 (1H, m, H-7'a), 3.11 (1H, m, H-6b), 3.21 (1H, m, H-5), 3.26-3.31 (4H, m, glc H-2, 4, 5, H-7b), 3.38 (1H, dd, J = 7.9, 8.6 Hz, glc H-3), 3.63 (1H, dd, J = 5.2, 11.6 Hz, glc H-6a), 3.84 (1H, dd, J = 1.2, 11.6 Hz, glc H-6b), 4.16 (1H, d, J = 14.7 Hz, H-10a), 4.28 (1H, d, J = 14.7 Hz, H-10b), 4.55 (1H, dd, J = 6.1, 6.7 Hz, H'-8), 4.68 (1H, dd, J = 3.1, 7.9 Hz, glc H-1), 5.10 (1H, d, J = 2.4,

Table 3. NMR Spectroscopic Data (in CD_3OD) for Eucomoside C (3)

position	$\delta_{\rm C}$	$\delta_{ m H} \left(J \mbox{ in Hz} ight)$	HMBC
1	97.7	5.06 d (7.3)	Glc H-1
3	150.2	7.11 s	H-1, H-4, H-5,
4	115.5		H-11
5	36.0	3.13 m	H-1, H-3, H-4, H-6, H-9
6a	38.8	1.63 d (7.9, 15.9)	
6b		2.24 dd (7.9, 15.3)	
7	127.9	5.58 s	H-5, H-6, H-9, H-10
8	144.7		
9	47.4	2.67 dd (9.2, 9.2)	H-1, H-6, H-7, H-8
10a	61.3	4.12 d (14.7)	H-7, H-8
10b		4.29 d (14.7)	
11	169.9		
Glc 1	100.3	4.65 d (7.9)	
Glc 2	74.9	3.20 m	
Glc 3	77.9	3.37 m	
Glc 4	71.6	3.27 m	
Glc 5	78.4	3.27 m	
Glc 6a	62.7	3.63 dd (5.5, 11.6)	
Glc 6b		3.84 dd (1.8, 12.2)	
2'	124.4	7.09 s	H-8, H-9
3'	111.8		H-4, H-8
4'	119.6	7.57 d (7.9)	H-3, H-6, H-9
5'	119.8	6.98 dd (7.3, 7.9)	H-7, H-8
6'	122.4		H-4
7'	112.2	7.30 d (8.6)	
8'	129.0		
9'	138.1		
10a	28.3	3.20 m	H-3, H-8, H-11
10b		3.43 dd (4.3, 14.7)	
11'	57.5	4.61 d (6.7)	
12'	180.0		

7.3 Hz, H-1), 5.72 (1H, s, H-7), 7.12–7.25 (6H, m, H-3, H-2', 3', 4', 5', 6'); 13 C NMR (in CD₃OD, 125 MHz) δ 36.5, 39.0, 39.3, 47.4, 57.2, 61.5, 62.7, 71.6, 75.0, 77.9, 78.4, 98.0, 100.3, 116.2, 127.4, 128.0, 129.2 × 2, 130.7 × 2, 139.5, 145.0, 148.1, 169.2, 178.5; positive FABMS *m*/*z* 544 [M + Na]⁺.

Eucomoside C (3): white powder; $[\alpha]_D - 13.1$ (*c* 0.5, H₂O); ¹H NMR (in CD₃OD, 500 MHz) δ 1.63 (1H, dd, J = 7.9, 15.9 Hz, H-6a), 2.24 (1H, dd, J = 7.9, 15.3 Hz, H-6b), 2.67 (1H, dd, J = 9.2, 9.2 Hz, H-9), 3.13 (1H, m, H-5), 3.18–3.21 (2H, m, glc H-2, H'-10a), 3.26–3.27 (2H, m, glc H-4, 5), 3.37 (1H, m, glc H-3), 3.43 (1H, dd, J = 4.3, 14.7 Hz, H-10'b), 3.63 (1H, dd, J = 5.5, 11.6 Hz, glc H-6a), 3.84 (1H, dd, J = 1.8, 12.2 Hz, glc H-6b), 4.12 (1H, d, J = 14.7 Hz, H-10*a*), 4.29 (1H, d, J = 7.9 Hz, glc H-1), 5.06 (1H, d, J = 6.7 Hz, H-1)', 4.65 (1H, d, J = 7.9 Hz, glc H-1), 5.06 (1H, d, J = 7.3 Hz, H-1), 5.58 (1H, s, H-7), 6.98 (1H, dd, J = 7.3, 7.9 Hz, H-5'), 7.06 (1H, dd, J = 7 0.3, 7.9 Hz, H'-6), 7.09 (1H, s, H-2'), 7.11 (1H, s, H-3), 7.30 (1H, d, J = 8.6 Hz, H-7'), 7.57 (1H, d, J = 7.9 Hz, H'-4); ¹³C NMR (in CD₃OD, 125 MHz), see Table 3; HRESIMS *m*/*z* 559.1980 [M – H]⁺ (calcd for C₂₇H₃₁N₂O₁₁, 559.1927).

Conjugated Compound (6c) of Geniposidic Acid and L-Tryptophan Methyl Ester. Compound 6c was prepared in a similar way to 6a, using 4 (27.0 mg, 0.072 mmol), L-tryptophan methyl ester (18.0 mg, 0.071 mmol), Et₃N (0.03 mL, 0.215 mmol), HOBt (18.5 mg, 0.137 mmol), and WSC (35.0 mg, 0.183 mmol) in DMF (2.0 mL). Compound 6c was obtained as a white powder (27.8 mg, 67% yield): $[\alpha]_D$ -60.9 (c 0.5 DMSO); ¹H NMR (in CD₃OD, 500 MHz) δ 1.85 (1H, m, H-6a), 2.45 (1H, dd, J = 8.5, 15.9 Hz, H-6b), 2.71 (1H, dd, J = 7.3, 7.9 Hz, H-9), 3.18-3.37 (7H, m, glc H-2, 3, 4, 5, H-5, H-10'a, 10'b), 3.63 (1H, m, glc H-6a), 3.71 (1H, s, OMe), 3.85 (1H, dd, *J* = 1.8, 11.0 Hz, glc H-6b), 4.15 (1H, d, J = 14.0 Hz, H-10a), 4.27 (1H, d, J = 14.0Hz, H-10b), 4.67 (1H, d, J = 4.3, 8.6 Hz, H-11'), 4.77 (1H, dd, J =5.5, 8.6 Hz, glc H-1), 5.10 (1H, dd, J = 4.3, 7.3 Hz, H-1), 5.67 (1H, s, H-7), 7.01 (1H, dd, J = 7.2, 7.9 Hz, H-5'), 7.08-7.10 (3H, m, H-3, H-2', 6'), 7.34 (1H, dd, J = 4.3, 7.9 Hz, H-7'), 7.53 (1H, dd, J = 4.3, 7.9 Hz, H-4'); ¹³C NMR (in CD₃OD, 125 MHz) δ 28.1, 36.1, 39.0, 47.5, 52.6, 55.0, 61.4, 62.8, 71.6, 75.0, 77.9, 78.4, 97.7, 100.3, 110.9, 112.5, 115.8, 119.2, 120.0, 122.6, 124.5, 128.0, 128.8, 138.2, 144.7, 148.8, 170.2, 174.4; positive FABMS m/z 575 [M + H]⁺.

Deprotection of 6c. Compound **7c** was prepared in a similar way to **7a**, using **6c** (27.8 mg, 0.048 mmol). Compound **7c** was obtained as

a white powder (11.0 mg, 41% yield): $[\alpha]_D = -0.1$ (c 0.5, MeOH); ¹H NMR (in CD₃OD, 500 MHz) δ 1.61 (1H, m, H-6a), 2.21 (1H, dd, J = 8.5, 15.9 Hz, H-6b), 2.67 (1H, dd, J = 6.7, 7.9 Hz, H-9), 3.13 (1H, dd, J = 8.3, 15.3 Hz, H-5), 3.20 (1H, dd, J = 7.9, 8.5 Hz, glc H-2), 3.24-3.40 (3H, m, glc H-4, 5, H-10'a), 3.37 (1H, m, glc H-3), 3.45 (1H, dd, J = 4.9, 14.9 Hz, H-10'b), 3.64 (1H, dd, J = 5.2, 12.0 Hz, glc H-6a), 3.84 (1H, dd, J = 1.8, 11.6 Hz, glc H-6b), 4.12 (1H, d, J = 14.7 Hz,H-10a), 4.24 (1H, d, J = 14.7 Hz, H-10b), 4.63 (1H, d, J = 5.2, 6.7 Hz, H'-11), 4.66 (1H, d, J = 4.3, 7.3 Hz, glc H-1), 5.01 (1H, dd, J = 4.3, 7.3 Hz, H-1), 5.56 (1H, s, H-7), 6.95 (1H, dd, J = 7.3, 7.3 Hz, H-5'), 7.03 (1H, dd, J = 7.3, 7.7 Hz, H-6'), 7.06 (1H, d, J = 3.7 Hz, H-2'), 7.08 (1H, d, J = 4.3 Hz, H-3), 7.29 (1H, dd, J = 4.9, 7.9 Hz, H-7'), 7.57 (1H, d, J = 3.7, 8.5 Hz, H-4'); ¹³C NMR (in CD₃OD, 125 MHz) & 28.5, 36.2, 38.8, 47.5, 57.0, 61.4, 62.7, 71.6, 75.0, 77.9, 78.4, $97.8, 100.3, 112.0 \times 2, 115.9, 119.6, 119.8, 122.2, 124.5, 128.0, 129.7,$ 137.9, 144.6, 148.7, 168.9, 179.0; positive FABMS *m/z* 583 [M + Na]⁺.

Conjugated Compound (6d) of Geniposidic Acid and D-Tryptophan Methyl Ester. Compound 6d was prepared in a similar way to 6a, using 4 (27.0 mg, 0.072 mmol), D-tryptophan methyl ester (25.4 mg, 0.100 mmol), Et₃N (0.03 mL, 0.215 mmol), HOBt (36.5 mg, 0.270 mmol), and WSC (69.0 mg, 0.360 mmol) in DMF (2.0 mL). Compound 6d was obtained as a white powder (34.3 mg, 83% yield): $[\alpha]_D = 20.3$ (c 0.5, MeOH); ¹H NMR (in CD₃OD, 500 MHz) δ 1.89 (1H, m, H-6a), 2.47 (1H, dd, J = 8.6, 15.9 Hz, H-6b), 2.70 (1H, dd, J = 7.3, 14.7 Hz, H-9), 3.12 (1H, dd, J = 7.9, 16.5 Hz, H-5), 3.20-3.40 (6H, m, glc H-2, 3, 4, 5, H-10'a, 10'b), 3.64 (1H, dd, J = 5.5, 11.0 Hz, glc H-6a), 3.71 (1H, s, OMe), 3.85 (1H, dd, J = 1.8, 11.6 Hz, glc H-6b), 4.16 (1H, d, J = 13.4 Hz, H-10a), 4.28 (1H, d, J = 14.0 Hz, H-10b), 4.68(1H, d, J = 3.7, 7.9 Hz, H-11'), 4.80 (1H, dd, J = 5.5, 7.9 Hz, glcH-1), 5.11 (1H, dd, J = 3.7, 6.7 Hz, H-1), 5.68 (1H, s, H-7), 7.00 (1H, m, H-5'), 7.06-7.10 (2H, m, H-2', 6'), 7.20 (1H, m, H-3), 7.34 (1H, d, J = 3.7, 7.9 Hz, H-7'), 7.52 (1H, dd, J = 3.7, 7.9 Hz, H-4'); ¹³C NMR spectral data (in CD₃OD, 125 MHz) δ 28.2, 36.2, 39.1, 47.4, 52.7, 55.0, 61.4, 62.8, 71.7, 75.0, 78.0, 78.4, 97.8, 100.3, 110.8, 112.4, 115.7, 119.2, 120.0, 122.6, 124.5, 128.0, 128.9, 138.1, 144.8, 148.8, 169.8, 174.1; positive FABMS m/z 597 [M + Na]⁺.

Deprotection of 6d. Compound 7d was prepared in a similar way to 6a using 6d (34.3 mg, 0.059 mmol). Compound 7d was obtained as a white powder (24.3 mg, 73% yield): $[\alpha]_D$ -62.2 (c 0.5, MeOH); ¹H NMR (in CD₃OD, 500 MHz) δ 1.93 (1H, m, H-6a), 2.61 (2H, m, H-6b, H-9), 2.95 (1H, dd, J = 7.9, 17.1 Hz, H-5), 3.19–3.38 (5H, m, glc H-2, 3, 4, 5, H-10'a), 3.42 (1H, dd, J = 5.5, 13.4 Hz, H-10'b), 3.63 (1H, dd, J = 5.5, 12.8 Hz, glc H-6a), 3.83 (1H, dd, J = 2.4, 12.2 Hz, glc H-6b), 4.14 (1H, d, J = 14.0 Hz, H-10a), 4.27 (1H, d, J = 14.6 Hz, H-10b), 4.62 (1H, dd, J = 5.5, 9.1 Hz, H'-11), 4.69 (1H, dd, J = 2.4, 7.9 Hz, glc H-1), 5.03 (1H, dd, J = 3.1, 7.9 Hz, H-1), 5.68 (1H, s, H-7), 7.01 (1H, dd, J = 7.6, 7.9 Hz, H-6'), 7.06 (2H, s, H-2', H-3'), 7.27 (1H, dd, J = 3.1, 11.6 Hz, H-7'), 7.53 (1H, dd, J = 3.7, 7.9 Hz, H-4'); ¹³C NMR (in CD₃OD, 125 MHz) δ 28.9, 36.6, 39.3, 47.3, 57.2, 61.5, 62.7, 71.6, 75.0, 77.9, 78.4, 98.1, 100.4, 112.0, 112.1, 116.0, 119.5, 119.8, 122.1, 124.6, 128.0, 129.7, 137.9, 144.9, 148.5, 168.9, 178.8; positive FABMS m/z 583 [M + Na]⁺.

References and Notes

- Namba, T.; Hattori, Y.; Yie, J. N.; Ma, Y. H.; Nomura, Y.; Kaneko, S.; Kitamura, Y.; Koizumi, T.; Katayama, K.; Lu, W. Wakaniyakugaku Zasshi 1986, 3, 89–97.
- (2) Shimoyama, A.; Yamazaki, M.; Nakazawa, Y.; Yahara, S.; Nohara, T. Shoyakugaku Zasshi 1993, 47, 56–59.
- (3) Tanaka, C.; Nakamura, T.; Nakazawa, Y.; Nohara, T. Chem. Pharm. Bull. 1997, 45, 1379–1380.
- (4) Nakamura, T.; Nakazawa, Y.; Onizuka, S.; Tanaka, C.; Yahara, S.; Nohara, T. Nat. Med. 1997, 51, 275–277.
- (5) Nakamura, T.; Nakazawa, Y.; Onizuka, S.; Tanaka, C.; Yahara, S.; Nohara, T. *Nat. Med.* **1998**, *52*, 460.
- (6) Takamura, C.; Hirata, T.; Yamagushi, Y.; Ono, M.; Miyashita, H.; Ikeda, T.; Nohara, T. *Nat. Med.* **2007**, *61*, 220–221.
- (7) Emily, S.; Juan, S.; Clifford, U.; Robert, W. *Tetrahedron* 2001, *57*, 5303–5320.

NP0780046